Errata

Preface

Page xix, line 10: "Chrisophe" should be "Christophe".

Chapter 2

Page 56, paragraph 1: The last sentence of the paragraph should read:
When \mathbf{E} is a Banach space with norm dual \mathbf{E}^{\prime}, we refer to $\sigma\left(\mathbf{E}, \mathbf{E}^{\prime}\right)$ as the weak topology on \mathbf{E}, and $\sigma\left(\mathbf{E}^{\prime}, \mathbf{E}\right)$ as the weak topology on \mathbf{E}^{\prime}. ."

Chapter 3

Page 99, line 4: Should start

$$
\left[y+e^{v(0)} /\left(1-e^{v(0)}\right)\right] e^{-v(c)}-1 /\left(1-e^{v(0)}\right)
$$

Page 103, line 15: Should start

$$
W(c, 0)=c^{\gamma} / \rho
$$

Chapter 4

Page 125, condition (2): Should read " $x \in \mathbb{R}_{+}^{m+1 "}$, not " $k \in \mathbb{R}_{+}^{m+1 "}$.
Page 126, line 5: Should read

$$
\sum_{j=0}^{m} \ell^{j} \leq 1 \text { and } \ell^{j}, a^{i j} \geq 0 \text { for all } i, j
$$

Page 128, line 11: The definition of G should be:

$$
G(\mathbf{x}, \epsilon, N)=\left\{\mathbf{z} \in s^{m}:\left|x_{t}-z_{t}\right|<\epsilon \text { for } t=1, \ldots, N\right\} .
$$

Page 152, line-8: Should have " $D_{t} W_{1}\left(c_{t}^{*}, J\left(S^{t} \mathbf{c}^{*}\right)\right.$ " instead of " $W_{1}\left(c_{t}^{*}, J\left(S^{t} \mathbf{c}^{*}\right)\right)$ ".

Chapter 5

Page 159, displayed equation: Should read:

$$
1+R\left(S^{t-1} \mathbf{c}\right)=\frac{U_{1}\left(S^{t-1} \mathbf{c}\right)}{U_{2}\left(S^{t-1} \mathbf{c}\right)}=\frac{W_{1}\left(c_{t}, U\left(S^{t} \mathbf{c}\right)\right)}{W_{2}\left(c_{t}, U\left(S^{t} \mathbf{c}\right)\right) W_{1}\left(c_{t+1}, U\left(S^{t+1} \mathbf{c}\right)\right)}
$$

Chapter 8

Page 293, lines 14-15: Should read:
a net trade \mathbf{x} is $\mathbf{c}=\left(\left(x_{1}^{0}+1, x_{1}^{1}+k\right),\left(x_{2}^{0}+1, x_{2}^{1}\right), \ldots\right)$. The consumer supplies labor inelastically, and has utility $U(\mathbf{c})=U\left(x_{1}^{1}+k, x_{2}^{1}, x_{3}^{1}, \ldots\right)$.

Page 293, beginning of paragraph 4 and display: Should read:
For (J3), suppose $\mathbf{x} \in X, \mathbf{y} \in Y$ and $\delta>0$ are given. Choose $\alpha \leq 1$ with $\delta \geq \alpha \bar{b}^{1}$. Now

$$
\begin{aligned}
(-1,0)+(-\delta,-\delta)+\alpha(1 / \gamma, \bar{k} / \gamma) & =(-1-\delta+\alpha / \gamma,-\delta+\alpha \bar{k} / \gamma) \\
& \leq \alpha\left((1-\gamma) / \gamma,\left(\bar{k}-\gamma \bar{b}^{1}\right) / \gamma\right)
\end{aligned}
$$

Page 299, line 16: Should have " $\left(x^{1}, \ldots, x^{H}\right)$ " instead of " $\left(x_{1}, \ldots, x_{H}\right)$ ".
Page 305, line -8: Should end with " $\delta\|\mathbf{p}\|_{1}=\delta \mathbf{p e} \leq-\mathbf{p} \overline{\mathbf{x}} \leq "$

